STAG: Smart Tools and Applications in Graphics (2021)
P. Frosini, D. Giorgi, S. Melzi, and E. Rodola (Editors)

A High Quality 3D Controller
for Mobile and Desktop Web Applications

D. Fornaril, L. Malomo?

, Paolo Cignoni2

! University of Pisa, Italy
2ISTI - CNR, Pisa, Italy

Abstract

The interaction between a 2D input device (like a mouse or a touchscreen) and a 3D object on the screen with the purpose of
examining it in detail is a well-studied interaction problem. The inherent difference in degrees of freedom between input devices
and possible 3D transformations makes it difficult to intuitively map inputs to operations to be performed on 3D objects.
Although, over the years, studies led to a wide variety of solutions to overcome this problem, most of them are not actually
available in real-world applications. In particular, for 3D web applications, only basic solutions are often implemented, and
even the most used web framework for 3D still lacks state of the art implementations. We will face the problem of 3D interaction
through touch and mouse input, and we propose our implementation of a 3D view manipulator for web applications, which offers
a natural control, advanced functionalities, and provides an easy-to-use interface for both desktop and mobile environments.

1. Introduction

Efficient and intuitive tools for 3D content manipulation are of-
ten essential components for all use cases where the user needs
to inspect/explore a virtual object on the screen. These tools must
succeed in giving the user the ability to control the spatial trans-
formations of a 3D object and thus look interactively at different
details of the displayed object in a simple, intuitive way.

In practice, we want to perform rotate, scale and translate (RST)
operations, involving a total of 7 degrees of freedom (DOFs). How-
ever, this rich freedom conflicts with the just two degrees of free-
dom of screen based input devices, like mouse and touchscreen,
and this gap does not enable a direct mapping between an input and
a 3D transformation. While literature has provided many sophisti-
cated solutions, briefly reported in Section 2, and while many of
them have been implemented in commercial desktop applications,
for web based applications the situation is still different. Most exist-
ing web frameworks for 3D offer very limited 3D interaction tech-
niques and they often lack in providing a consistent mouse/touch
support. For this reason we developed a novel 3D view controller
for three.js [thr], which is currently the most used framework to
build 3D web applications. The newly developed controller uses
techniques which are considered to be the actual state of the art and
aim to overcome the limitations of the controllers already provided
by this library, providing advanced navigation functionalities and
full touch support through an intuitive and natural interface.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/stag.20211480

2. State of the art

In theory, RST operations could be performed in a direct way, by
manually modifying an object’s transformation matrix, but obvi-
ously such an approach is not reasonable. Over the years a large
amount of research has been dedicated to make 3D manipulation
more intuitive by exploiting the available input devices. In the fol-
lowing we will mention only a few techniques that have been pro-
posed in recent years; for a longer survey of existing approaches
we refer to the literature in [RDH09, MCG12,MLF11].

The virtual trackball [Bel88] represents a milestone for rotation
techniques. This manipulation method simulates the behavior of a
real trackball device to control the orientation of an object, grant-
ing control over three rotational degrees of freedom using a input
device with just two degrees of freedom. This is done by unproject-
ing the 2D screen coordinates of the cursor onto a virtual spherical
surface in the 3D world (the trackball surface). Given two different
cursor positions in screen space, p, to pp, their corresponding 3D
points on this virtual surface, P, and Py, are computed. Then, from
these two points, rotation axis and angle are computed as the cross
product between V,;, = OP, and Vp = 07’1,, where O is the center of
the virtual sphere, and the angle between V, and V}, (see Figure 1).

Sticky Tools is a multi-touch manipulator which combines of
three other manipulation paradigms: Sticky Fingers, Opposable
Thumbs and Virtual Tools [HtCCO09]. Once a finger gets in touch
with an object, it remains “glued” to it so when the finger moves,
the object follows it by maintaining the contact point. The trans-
late operation (Figure 2a) is performed by dragging one finger, the
scale operation (Figure 2c) can be done with a two-finger pinch

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org



https://orcid.org/0000-0001-7892-894X
https://orcid.org/0000-0002-2686-8567
https://doi.org/10.2312/stag.20211480

104 D. Fornari, L. Malomo, P. Cignoni / A High Quality 3D controller for Web Applications

Figure 1: Axis and angle obtained by the unprojection of the cursor
on the virtual trackball surface.

gesture and the rotate operation can be performed either by rotat-
ing two fingers on the screen (Figure 2b), which controls rotation
around the Z axis or by placing two fingers on the screen and using
a third to “flip” the object around the axis determined by the first
two fingers (Figure 2d).

(¢) Scale

(d) Thumb-rotation

Figure 2: Performing operations with Sticky Tool. (a), (b) and (c)
come from Sticky Fingers technique while (d) comes from Oppos-
able Thumb method.

TouchSketch [WCOM15] is instead a widget-based manipulator
for multi-touch devices, which exploits fingers’ movement on the
screen to determine the manipulation mode and to control the trans-
formation, along with a widget to specify an axis or plane constraint
(Figure 3).

m. 77 d_’ m\

Figure 3: Performing RST operations with TouchSketch. Image
from [WCOM15]

As suggested in the Introduction, we want to improve over the
camera manipulation tools available in the three.js framework. This

framework currently offers two main controllers to perform inter-
active camera manipulation. The first controller is OrbitControls,
which is a plain turntable camera manipulator that converts mouse
x/y movement into rotation around X/Y axes. The rotation around Y
is free, while the “up-down” rotation around X axis is constrained
to avoid that the camera goes over the “north pole” or “south pole”.
The other camera manipulator is TrackballControls, which behaves
similarly to OrbitControls. The main difference is that rotation
around the X axis is not constrained, but it suffers of bad cursor
tracking; this results in a noticeably bad synchronization between
cursor movement and the corresponding operation which is partic-
ularly annoying while performing a rotate operation. With respect
to our proposed implementation, both manipulators lack rotation
control around the Z axis and they are not “conservative” with re-
spect to the rotate operation (i.e. returning to the starting point will
not make the camera to return to its starting orientation). Moreover,
they do not provide any additional features other than common RST
operations.

3. Design and implementation

To provide a good general purpose 3D manipulator (controller)
many design decisions should be taken to guarantee consistency
and intuitiveness. The first choice to make when dealing with 3D
manipulations is to pick between two dual metaphors to model the
transformations: object vs. camera manipulation. In the first case
the controller actually rotates the 3D object, while in the second
case the camera moves around the object to actually implement the
transformations. While from the user point of view the difference
can be irrelevant, from the point of view of a developer designing
a 3D interactive application the difference is significant. We opted
for the second case for consistency with other three.js manipula-
tors. As a consequence, we designed our controller API adopting a
mimicking strategy, to eventually allow developers to replace, in
the simplest manner as possible, the three.js manipulator in use
with ours. In the following we describe some details of the basic
transformations actually implemented in our manipulator.

In our controller the rotation is performed by clicking and drag-
ging, and is achieved by using the virtual trackball technique. We
chose the Bell’s version [Bel88] which, instead of a sphere, con-
siders a surface which combines a hemisphere with a hyperbolic
sheet, to extend the cursor mapping to the entire display (Figure 4).
The unprojection operation consists in firing a ray from the camera
towards the cursor position projected on the camera near plane. As
result, we obtain a straight line passing through two points, which
intersects the trackball surface to find the unprojected point (Fig-
ure 5).

The translate operation is performed with the right mouse button
clicking and dragging. The cursor position is unprojected on a plane
passing from the center of the trackball which is orthogonal to the
view direction (the trackball plane). In a similar way to the virtual
trackball, once the interaction starts, the initial cursor position p, is
unprojected to the trackball plane, obtaining the 3D point P,. Then,
every time the cursor is moved to a point pj, its unprojection on
the plane P, is computed. To avoid drifting, the translation vector
is obtained as the difference T = P, — P4, which is applied every
time to the initial transformation (Figure 6).

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



D. Fornari, L. Malomo, P. Cignoni / A High Quality 3D controller for Web Applications 105

Y05
RS
TP
o s gustitinany
O ! “:““‘\\‘\‘\“‘:“::“:::
1 SIS
¢“‘“¢“““

y -1

Figure 4: 3D representation of the trackball surface obtained by
combining a sphere and a hyperbolic sheet.

The zoom operation is triggered with mouse wheel scroll and
takes into account which type of camera is being used. A perspec-
tive camera simulates the human sight, where things closest to our
eyes appear bigger. For this camera, zoom can be obtained by mov-
ing the camera along its view direction. On the other hand, with an
orthographic camera, the distance from the camera does not impact
the object appearance: in this case, zoom is obtained by modifying
the camera’s projection matrix. In both cases we take care to avoid
the common error of mapping linear movement into linear scaling,
an approach that, while common, does not reflect the inherently
geometric/exponential nature of the scaling operation.

3.1. Additional features

Besides the standard RST operations, two additional functionalities
have been added to provide easier and faster 3D object inspection.
The focus operation is activated with a double click and can be used
to automatically set the focus in a user specified region on the ob-
ject’s surface. It combines translation and zoom operation to set
the target point on the object exactly in the middle of the trackball,
which is a convenient position if the user wants to inspect that re-
gion. The other operation is the field of view (FOV) manipulation
and it’s activated using the shift key + mouse wheel scrolling. The

c &

T
Z
[¢]
8
=R
)
5
[¢]

Trackball
surface

)

Figure 5: Cursor point unprojection on the virtual trackball sur-
face.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Figure 6: Translation vector (orange) obtained from the unprojec-
tion of the cursor on the trackball plane.

operation can be performed only when using a perspective camera
and it’s implemented with a “vertigo-style” method: the camera is
moved away from the object as the FOV angle is reduced, while it
is brought closer when the FOV is enlarged.

3.2. Multi-touch interaction

While previous sections describe the behavior of mouse/keyboard
interaction, in the following we describe how we naturally extended
the our controller interaction scheme for multi-touch inputs. With
tactile input devices, the user feels a sensation of real manipula-
tion of the object, considering that the interaction is not mediated
by some external device, but the user is actually “touching” the
object. For this reason, providing a natural and realistic sense of
manipulation is a critical aspect for this kind of interaction. In our
controller implementation the operations are recognized according
to the number of fingers on the screen and the gesture being per-
formed.

One-finger drag is used to perform the rotate operation. The im-
plementation is the same as for mouse/keyboard interaction (Fig-
ure 7a).

With a double tap gesture, the user can specify a point for the focus
operation (Figure 7b).

Two-finger drag is used to perform the franslate operation. To
guarantee consistence between finger and object movement, the
midpoint between the two fingers is taken into account and is un-
projected on the trackball plane as for the mouse/keyboard translate
operation.

The zoom is performed with a pinch gesture (shrink or pull apart).
On the first interaction, the distance between fingers Ay is stored,
then, as the fingers distance changes, the amount of scaling is com-
puted as s = ﬁ—g, with A representing the current distance. In this
type of interaction, the screen is seen as an elastic sheet, so when
the user pulls apart fingers, the region between them is expanded
(or reduced in case of shrink). This effect is obtained by unpro-
jecting the midpoint between fingers on the trackball plane as for
translate operation and using it as a pivot point for the scaling.

An additional operation, which can be performed only with multi-
touch interaction, is the Z-rotation. Since the point of contact be-



106 D. Fornari, L. Malomo, P. Cignoni /A High Quality 3D controller for Web Applications

(a) Rotate (b) Focus

Figure 7: One-finger interaction.

tween fingers and the object should always be maintained, a two-
finger rotation causes the object to rotate around the Z axis, with
the pivot point being the middle point between two fingers.

(b) Scale (¢) ZRotate

(a) Translate

Figure 8: Two-fingers interaction for achieving combined Transla-
tion, Scaling and Rotation along the view direction (z axis).

Lastly, a vertical drag with three or more fingers is used to
achieve the field of view manipulation, that allows to change the
current camera parameters back and forth between wide-angle and
telephoto lenses.

3.3. User experience improvements

To provide the user with an enjoyable experience is another key
aspect that has been taken into consideration while developing this
tool. To give the user a good feedback of the trackball rotation,
we provided visual feedback for the 3D trackball sphere which is
represented by three circular gizmos, each one orthogonal to one
axis (X, Y and Z) and matching exactly the trackball sphere radius
and position (Figure 10). We also made sure to provide a smooth
transition between operations: in any moment, the user can swap
from an operation to another without the need of interrupting it.

Figure 9: Field of view manipulation using three fingers.

Figure 10: The gizmo of the virtual sphere represents the surface
where drag actions are mapped into rotations and allows a better
understanding of the interaction effects.

Additionally, mouse/keyboard inputs are fully customizable: de-
velopers can set or remove an association between an input combi-
nation and an operation to be performed anytime, providing thus a
comfortable input system for 3D applications with different needs.
Providing an informative feedback is also important for a pleas-
ant user experience as users enjoy to see virtual elements behave
like they do in the real world. For this reason, we introduced a dy-
namic damping effect for the rotate operation. Animation has also
been added for the focus operation. To instantly translate an object
from a position to another can result confusing. To avoid this un-
desirable effect, a cubic ease-out interpolation is used to perform
a smooth translation when performing this operation. Animations
are enabled by default and can be disabled using the provided APIL.
Another interesting feature available was motivated by the common
need of saving the current view state. We exposed this functional-
ity in a very intuitive way, exploiting the clipboard. The user can
save and re-apply the view state with the classical ctrl+c ctrl+v
key combinations. The implementation is performed by serializ-
ing the views state in a human-readable json text which, interest-
ingly enough, enables many practical possibilities such as saving
the view state in a file for later use or even passing view state be-
tween different instances/web pages.

4. Conclusions

Our main goal was to provide the three.js developer community
a state of the art manipulator that could enhance the user expe-

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



D. Fornari, L. Malomo, P. Cignoni /A High Quality 3D controller for Web Applications

rience with respect to 3D object inspection. Although OrbitCon-
trols performs well in simple cases, and TrackballControls can be
used as an alternative where full control over rotation around X
axis is required, these controllers have severe limitations, nega-
tively affecting the user experience. Thanks to an intuitive inter-
action scheme, which allow the user to perform rotation over all
three axes in a precise way, and the advanced navigation function-
alities, we strongly believe that our manipulator will result more
versatile and pleasant to use in all situations. Thanks to an intuitive
interaction scheme built for classic mouse/keyboard and touch in-
teraction and advanced navigation functionalities, our manipulator
is a powerful tool which outperforms other controllers and over-
comes their limitations.The manipulator implementation has been
submitted to the three.js developer community and it has been re-
ceived enthusiastically. It has been already included the official
three.js codebase. A simple demo showing the capabilities of the
controller can be found at the link: https://threejs.org/
examples/#misc_controls_arcball.

References

[Bel88] BELL G.: Bell’s trackball. Written as part of the “flip” demo to
demonstrate the Silicon Graphics hardware, 1988. 1, 2

[HtCC09] HANCOCK M., TEN CATE T., CARPENDALE S.: Sticky tools:
Full 6dof force-based interaction for multi-touch tables. In Proceedings
of the ACM International Conference on Interactive Tabletops and Sur-
faces (New York, NY, USA, 2009), ITS *09, Association for Computing
Machinery, p. 133-140. doi1:10.1145/1731903.1731930. 1

[MCGI12] MARTINET A., CASIEZ G., GRISONI L.: Integrality and
separability of multitouch interaction techniques in 3d manipulation
tasks. IEEE Transactions on Visualization and Computer Graphics 18,3
(2012), 369-380. doi:10.1109/TVCG.2011.129. 1

[MLF11] MENDES D., LOPES P., FERREIRA A.: Hands-on interac-
tive tabletop lego application. In Proceedings of the 8th International
Conference on Advances in Computer Entertainment Technology (New
York, NY, USA, 2011), ACE ’11, Association for Computing Machinery.
doi:10.1145/2071423.2071447.1

[RDHO09] REISMANJ. L., DAVIDSON P. L., HAN J. Y.: A screen-space
formulation for 2d and 3d direct manipulation. In Proceedings of the
22nd Annual ACM Symposium on User Interface Software and Technol-
ogy (New York, NY, USA, 2009), UIST ’09, Association for Computing
Machinery, p. 69-78. doi:10.1145/1622176.1622190. 1

[thr] three.js javascript 3d library. https://threejs.org/. Online;
accessed 20-October-2021. 1

[WCOMI15] WU S., CHELLALI A., OTMANE S., MOREAU G.: Touchs-
ketch: A touch-based interface for 3d object manipulation and editing.
In Proceedings of the 21st ACM Symposium on Virtual Reality Soft-
ware and Technology (New York, NY, USA, 2015), VRST ’15, Associa-
tion for Computing Machinery, p. 59-68. doi:10.1145/2821592.
2821606. 2

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

107


https://threejs.org/examples/#misc_controls_arcball
https://threejs.org/examples/#misc_controls_arcball
https://doi.org/10.1145/1731903.1731930
https://doi.org/10.1109/TVCG.2011.129
https://doi.org/10.1145/2071423.2071447
https://doi.org/10.1145/1622176.1622190
https://threejs.org/
https://doi.org/10.1145/2821592.2821606
https://doi.org/10.1145/2821592.2821606



